Part II. Convergence of the sequences
We have the serious difficulties with substantiation of the convergence in the balance relations that are the basis of the determination of mathematical models. Therefore, it would be useful to obtain as much information on the procedure for passing to the limit, in principle. We consider, at first, the different known forms of the convergence. It is very important that all these definitions are not constructive that makes their practical application difficult. Then we use the Cauchy criterion as the general practical method of proving the convergence of the sequences. Unfortunately, the applicability of the Cauchy criterion is limited of the complete spaces. However, we can use the completion technique for the non-complete spaces. This gives the method of the analysis the convergence for the general case.
Chapter 3. Convergence and Cauchy principle
The cause of the difficulties of the mathematical model determination is the passage to the limit. Particularly, a priori properties of the state function are required for passing to the limit in the balance relations characterizing the corresponding physical law. We consider the general definitions of the convergence for overcoming this obstacle.
One known that a sequence tends to its limit, if all its elements with large enough numbers are close enough to this limit. Thus, an a priori knowledge of the limit is required here for establishing the fact of convergence. This situation strongly resembles the previously described difficulty, because, in applications we do not know, as a rule, the limit in advance. We can assume that the constructive methods of substantiating the passage to the limit can be help us obtain the correct construction of mathematical models.
The practical method of proving the convergence is based on the Cauchy criterion. This method uses the notion of the fundamental sequence. It is most important here that the definition of the fundamental sequence includes the elements of the given sequence only, not the limit. We consider the Picard’s method for differential equations as an application of the Cauchy criterion. The well-known Banach fixed-point theorem is an extension of this result.
3.1. Definitions of the convergence
The limit is the most important notion of the mathematical analysis. Let us have a sequence {uk}. We would like to know the properties of the element uk after unbounded increment of the number k. Maybe uk is an approximate solution of a problem; and we would like to find its exact solution as the limit of the given sequence. Maybe we prove the solvability of a problem, and we try obtaining this result by finding the limit with special properties… 
Remember the classic definition of the limit. Consider the easiest definition of the limit on the set of real numbers.
Definition 3.1. The numerical sequence {uk} tends XE "сходимость:числовой последовательности"  to the number u that is called its limit XE "предел" , if for any 0 there exists a number k=k() such that |uk–u|<  for all k that is greater than k(). 

Unfortunately, this definition is not applicable for our situation, because we consider the convergence of functions, not of numbers. Try to extend this definition to the sequences of functions. Particularly, the sequence of continuous functions {uk} on the interval [a,b] tends to the function u, if for any 0 there exists a number k() such that
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This inequality can be changed by another condition
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There are the partial cases of the convergence in the linear normalized spaces.

The linear normalized space is the set with standard linear operations of the addition and the multiplication by the arbitrary number, where for all element u it is possible to determine its norm ||u||. 
Remark 3.1. Of course, this definition is non-strict. We have the analogical situation for other considered spaces. However, this is sufficient for our next analysis. 
The norm of the element is a non-negative number with special properties here. Particularly, the norm is non-negative number. Besides, its value is equal to zero for zero element of the space (for, example, for zero function) only. The norm satisfies also the following algebraic properties
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for all elements u and v and for arbitrary number a.

Determine some examples of norms that are important for our analysis. The set of real numbers 
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 is the linear normalized space with norm
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We can determine the norm in the Euclid space 
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 by the formula
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where ui is the component of the vector u. The norms of the set of the continuous functions can be determined by the equalities
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We consider also the space L2 XE "пространство:L2" (0,L) of the square integrable functions in the sense of Lebesgue with the norm determined by the equality
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Determine also the norm on the Sobolev space 
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The norm can characterize the closeness between the functions (see Figure 3.1). Then we determine the convergence in the arbitrary linear normalized space.
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Figure 3.1. Degree of the closeness of continuous functions.

Definition 3.2. A sequence {uk} of a linear normalized space tends to the limit u, if for any there exists a number k=k() such that ||uk–u|| <   for all k that is greater than k(). 

Of course, Definition 3.1 is the partial case of Definition 3.2, because this is the convergence of the linear normalized spaces of real numbers. Both form of convergence for the continuous functions are the convergence for the concrete linear normalized spaces.
Note that the convergence is based on the closeness of the elements uk of the sequence to the limit u. This property does not have any direct connection with algebraic operations. Therefore, it will be preferable to use sometimes the convergence for sets without any operations. Particularly, we can determine the convergence on the metric space. This is the set with a distance ((u,v) between arbitrary points u and v. The functional ( here is called the metric, if it satisfies the following properties. At first, the metric has only nonnegative values. Its equality to zero is true for the case of the equality of these points only. Besides, the metric is symmetric, that is ((u,v) = ((v,u) for all elements u and v, and it satisfies the triangle inequality (see Figure 3.2)
( (u,v) ( ( (u, w) + ( (w,v) (u,v,w.
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Figure 3.2. Triangle inequality.

Definition 3.3. The sequence {uk} of a metric space converges to an element u, if for any there exists a number k() such that ((uk, u)<  for all k that is greater than k(). 

The metric convergence is the convergence to zero of the numerical sequence 
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. Therefore, the distance between the element uk of the sequence and its limit tends to zero here (see Figure 3.3). We can determine the metric
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for all linear normalized space. Thus, the convergence for the linear normalized spaces is the partial case of the metric convergence.
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Figure. 3.3. The elements of the sequence approach to the limit.  
The metric convergence is the general enough notion. However, sometimes the closeness of elements does not have determined by a metric. Consider the linear normalized space X with scalar product. This is the unitary space. For all elements u and v here there exists its scalar product 
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 that is a number with concrete properties. Particularly, the scalar square 
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 is non-negative. Besides, it is equal to zero for the zero element only. The scalar product is symmetric such that
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The scalar product is linear operation such that
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Of course, the scalar product is linear with respect to second multiplier too, because of the symmetry.

Particularly, the scalar product in 
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 is the usual product. The scalar product in the Euclid space 
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The spaces C[0,L] and L2 XE "пространство:L2" (0,L) are the unitary with scalar product

[image: image26.wmf](

)

0

,()().

L

uvuxvxdx

=

ò


The Sobolev space 
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 is unitary too with scalar product 
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 Each unitary space is the linear normalized space with the norm
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The relation between the norm and the scalar product of the unitary space H is described also by the Schwarz inequality
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Using the norm, we could consider the convergence of the sequences of the unitary spaces that is determined by its norm that is called strong convergence. However, there exists another form of convergence here.
Definition 3.4. The sequence {uk} of the unitary space H converges weakly to an element u, if 
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Particularly, 
[image: image32.wmf]k

uu

®

 weakly in L2 XE "пространство:L2" (0,L), if
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Analogically, 
[image: image34.wmf]k

uu

®

 weakly in 
[image: image35.wmf]1

0

(0,)

HL

, if


[image: image36.wmf]1

0

00

()

()()()

 (0,).

LL

k

dux

dxdxdux

dxdxHL

dxdxdxdx

ll

l

®"Î

òò


Suppose we have the convergence 
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 strongly in a unitary space. Determine the value
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by the Schwarz inequality. Therefore, the weak convergence it follows from the strong one with the same limit. However, the inverse assertion is not obvious.
Example 3.1. Consider the functions
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of the space L2 XE "пространство:L2" (0,(). Find the value
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for an arbitrary function ( of L2 XE "пространство:L2" (0,(). This is the Fourier coefficient (k of the function (. By the convergence of the Fourier series
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it follows that 
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. Then we have the convergence 
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 for all (. Denote by u the function that is equal to zero everywhere. Therefore, we have 
[image: image44.wmf](,)(,)

k

uu

ll

®

 for all ( that is the convergence 
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 weakly in L2 XE "пространство:L2" (0,L). Now calculate the norm
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Then, we do not have the convergence 
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 strongly in L2 XE "пространство:L2" (0,L). Thus, the weak convergence is weaker that strong one. (
The weak convergence in the functional spaces (more exact, infinite dimensional spaces) is not metrisable, i.e. this is impossible to describe it by any norm. This is partial case of the topological convergence. 
Remark 3.2. On has the analogical situation for the convergence in the space of infinite differentiable functions and the space of distributions (see Chapter 5).
The topological space is the most general space, where the closeness has the sense. Each element of the topological space that is called the point has a class of neighbourhoods. The point u is close enough to the point v, if u belongs to a neighbourhood of v. Therefore, we can determine the convergence in the topological spaces.

Definition 3.5. The sequence {uk} of a topological space converges to a point u, if for any neighbourhood U of u there exists a number k(U) such that uk(U for all k that is greater than k(U) .  

The sequence converges, if all its elements with large enough numbers belong to the arbitrary neighbourhood of the limit (see Figure 3.4). The neighbourhood of a point u of a metric space can be determined by the set of all points v that satisfy the inequality ((u,v)<  for an arbitrary positive number (see Figure 3.5). The distance between a point from this neighbourhood and the given point u is less than . Therefore, the metric convergence is the partial case of the topological one.
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Figure 3.4. The elements of the sequence belong to the arbitrary neighbourhood of the limit.
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Figure 3.5. The neighbourhood of a metric space.

The neighbourhood of the point u of a unitary space H can be determined by the set of all points v that satisfy the inequality 
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for an arbitrary positive number . Hence, the weak convergence of the unitary spaces is the partial case of the topological one too.
The map 
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 on a unitary space determines the linear continuous functional. Thus, the neighbourhoods of the unitary spaces can be determined by the linear continuous functionals. One can to describe the neighbourhoods for the linear normalized spaces by the linear continuous functionals too. Moreover, we can determine the similar neighbourhoods for its extension that is linear topological space. There are the topological spaces with continuous linear operations. Of course, each linear normalized space is linear topological. Denote by 
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 the value of the linear continuous functional ( on the point u of the linear topological space X. The neighbourhood of a point u here is the set of all points v that satisfy the inequality 
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for an arbitrary positive number where X' is the set of all linear continuous functionals on the space X that is called the adjoint space for X. Then we can determine the weak convergence in the linear topological spaces, particularly in the linear normalized spaces.
Definition 3.6. The sequence {uk} of a linear topological space converges weakly to a u, if 
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 for all linear continuous functional (.

Of course, the weak convergence of the linear topological spaces is topological convergence too. Note that the weak convergence in the functional (more exact, infinite dimensional) spaces is not metrizable, i.e. we cannot any possibility to describe it by any metric, even more so, by a norm. The convergence in the sense of norm of the linear normalized space is called strong convergence. If we have the strong convergence, we have the weak convergence to the same limit here. However, it is possible the weak convergence without the strong convergence. 
Note the analogue between the weak convergence and generalized approach of the analysis. Indeed, for both situations we have the relations with arbitrary values of parameters. Over against, the strong convergence is similar to the classic approach because for both situations we have the direct relations without arbitrary values of parameters (see Table 3.1 and Table 3.2). 

Table 3.1. Areas of the classic and generalized approaches.
	area
	classic approach
	generalized method

	mathematical model
	classic model
	generalized model

	solution of the equation
	classic solution
	generalized solution

	state of the system
	classic state
	generalized state

	derivative of the function
	classic derivative
	generalized derivative

	convergence of the sequence
	strong convergence
	weak convergence 


Table 3.2. Characteristics of the classic and generalized approaches. 

	characteristic
	classic method
	generalized method

	definition
	direct 
	non-direct (presence of arbitrary parameters)

	relation
	each classic notion
is generalized notion
	each regular enough generalized notion 
is classic notion

	property of object
	stronger
	weaker

	class of applicability
	smaller
	larger


The hierarchy of different classes of convergence is rendered in Figure 3.6.
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Figure 3.6. Hierarchy of convergences.

We considered the different forms of the convergence. Now we try to determine how can prove the convergence of the sequence for the practical situation.

3.2. Non-constructiveness of the limit

All considered definitions affirm the convergence of the given sequence {uk} to the concrete element u. We can apply it if we know the element u that can be the limit of this sequence by our supposition. Unfortunately, we do not know it, as the rule, for the practical situation. Moreover, we do not know, as a rule, the fact of the convergence even. We have only the algorithm for solving a problem that is the means of the definition of the sequence. The value of the limit can be obtained as a solution of this problem after the passage to the limit. Besides, if we have already found the limit, we do not have any necessity to analyze the convergence of the sequence. The definitions of the convergence are not applicable for the practical proving of the fact of the convergence. It is clear for the computer analyses of the sequence. Indeed, we have an algorithm for the determination of the sequence and the admissible error. However, we do not know the limit. Therefore, we do not have the effective method of interrupting of the calculation because we do not know when the difference between an element of sequence and the result become less than this error.
We need to know in advance the initial limit for proving the convergence of the sequence. We need to know in advance the properties of the state function for the determination of the mathematical model (see Figure 3.7). For both situations, we have the necessity to use the properties of the final object before the definition of this object. Therefore, we hope that these problems have the similar resolutions. If we find the constructive method of proving the convergence, then we obtain perhaps the chance to find the method of correct determination of mathematical model.
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Figure 3.7. Analogy between 
the determination of the limit and the mathematical model.
Now we consider the constructive method of the determination of the convergence without a priori information about the limit. 

3.3. Cauchy criterion of the convergence
The basic method of the practical proof of the convergence of the numerical sequences is based on the notion of the fundamental sequence.

Definition 3.7. The sequence of real numbers {uk} is called fundamental or Cauchy sequence, if for any value  there exists a number k(), such that  | un – um | <   for all m and n greater than k().  

The basis of our theory is the Cauchy criterion.

Theorem 3.1. Any fundamental sequence of real numbers converges. 
We do not have any necessity to know the limit of the sequence for the justification of its fundamentality. We use the elements of the sequence only here (see Table 3.3). The effectiveness of the Cauchy criterion is the possibility to prove the convergence if we have the fundamental sequence. Of course, this result does not determine the value of the limit. However, we have often an interest to the fact of the convergence only. 

Table 3.3. Convergence and fundamentality of the sequence.

	property
	convergence 
	fundamentality

	definition
	approaching of the sequence elements to a limit
	approaching 
of the sequence elements 

	a priori information
	knowledge of the limit
	no

	computer experiment
	experiment estimate 

of the convergence 

is impossible
	experiment estimate
of the fundamentality 

is possible


Example 3.2. Let us consider the sequence {uk} that is determined by the equality 
uk = 1/k, k = 1, 2, … .
We would like to know, if is sequence converges or not. Determine n = m + p, where p > 0. We have 
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Choose the number m such that the inequality m > 1/( holds for the arbitrary fixed value (. Then the elements un and um are close enough. Therefore, we have the fundamental sequence. Using Cauchy criterion, we prove the convergence of the sequence without knowledge of its limit.                                            (   
Cauchy criterion is true for Euclid space, the space of the continuous functions with norm “the maximum of the absolute value”, and some other. It has the sense for the general linear normalized spaces and metric spaces because we can determine the notion of the fundamental sequences there.  

Definition 3.8. The sequence of the elements {uk} of a linear normalized space (respectively, metric space) is fundamental, if for any value  there exists a number k() such that 
|| un – um || <   (respectively, ((um, un) <  )  for all m and n greater than k(). 
Remark 3.3. The concept of the fundamental sequence does not make sense in the general topological space, because the notion of the mutual proximity of points is not defined there. There one can only estimate the proximity of one point to another. However, the fundamental sequences make sense in the linear topological spaces, where the estimate of the proximity of the elements of the sequence can be determine by the quantity 
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 for all linear continuous functional (. The uniform spaces with weak convergence are a generalization of such spaces. There it is possible to indicate whether the points under consideration are sufficiently close to each other without singling out one of them. Naturally, the metric spaces are uniform, although not every uniform space is metrizable. The hierarchy of topological spaces is shown in Figure 3.8. 

[image: image59.emf] 

metric   space s     linear topological space s    

topological   space s    

linear normalized space s    

uniform space s    

uni tary   space s    


Figure 3.8. Hierarchy of topological spaces.

Cauchy criterion is a basis of many important mathematical results. Consider its application to the differential equations theory.  

3.4. Picard’s method for differential equations
Consider the Cauchy problem for the general first order differential equation
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where f is a given function, u0 is a constant. We would like to prove the solvability of this problem under some assumptions about the function f. Consider the following property.
Definition 3.9. The function 
[image: image61.wmf]()

FFt

=

 is Lipschitz continuous, if the following inequality holds


[image: image62.wmf]()() ,,

FsFtLstst

-£-"


where the positive constant L is called the Lipschitz constant.
Any Lipschitz continuous function is continuous, and each differentiable function is Lipschitz continuous. However, there exists continuous functions that is not Lipschitz continuous and the Lipschitz continuous functions that is not differentiable (see Figure 3.9).
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Figure 3.9. Hierarchy of continuous functions.

Theorem 3.2 (Picard’s theorem). Let the function f be continuous with respect to the first argument and Lipschitz continuous with respect to the second argument. Then there exists a positive number T such that the problem (3.1) has a unique continuous solution on the interval (0,Т).

Proof. After integration of the differential equation from zero to a value x we have the equality 
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                                          (3.2)

Then the Cauchy problem (3.1) is equivalent to the integral equation (3.2). Using the Picard’s method or the method of successive iterations, we try to determine the approximate solution of this problem by the formula
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                            (3.3)

where the initial approximation  u0 = u0(x)  is arbitrary. 

Prove that the sequence {uk} is fundamental on the space С[0,T] of continuous functions on an interval (0,T). Determine n = m + p; we find
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By the equality (3.3) we get
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where L is the Lipschitz constant of the function f with respect to its second argument. Then we have
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Repeat these transformations. We obtain 
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Then we find
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Suppose  T < 1/L. Using the properties of the geometric progression, we get the inequality
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Put this result to the inequality (3.4). We have
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The value of the right-hand side of this inequality is small enough for large enough numbers m.

Thus, the sequence {uk} is fundamental on the space С[0,T] for the small enough value T. Using the Cauchy criterion, we prove the convergence of this sequence. Therefore, there exists a continuous function u such that uk ( u in С[0,T] as  k ( (.  
Prove that the limit u is a solution of the problem (3.1). After passing to the limit at the equality (3.3) with using the continuity of the function f with respect to its second argument, we get the equality (3.2) that is equal to the Cauchy problem (3.1). 
Prove now the uniqueness of this solution. Suppose on the contrary, there exists two solutions u1 and u2 of the considered problem. It satisfy equality (3.3), i.e.
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Find the difference
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Then we have


[image: image75.wmf](

)

(

)

(

)

(

)

 

  

1212

0

1212

00

()(),(),()

,(),()()(),

x

xx

uxuxfufud

fufudLuud

xxxxx

xxxxtxxx

-£-£

éù

ëû

£-£-

ò

òò


because of the Lipschitz condition. Determine the value
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By the inequality 
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that is false. Therefore, our supposition about the existence of the non-unique solution of the Cauchy problem is false too. This completes the proof of Theorem 3.2. (               
Note the steps of the proof that are typical for the practical application of the Cauchy criterion (see Table 3.4). At first, we choose the algorithm for the determination of the sequence {uk}. Then we prove that this sequence is fundamental. By the Cauchy criterion, this sequence is convergent. After the analysis of its limit, we prove that the obtained limit is the solution of the given problem. 
Table 3.4. Proof of the Picard’s theorem.

	step
	action 
	result

	1
	algorithm implementation
	{uk}

	2
	proving of the fundamentality
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	3
	using of the Cauchy criterion
	uk ( u 

	4
	analysis of the limit
	u is a solution


Consider examples.  
Example 3.3. We have the Cauchy problem
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Transform the given equation

[image: image81.wmf]2

.

du

dx

u

=


After integration of this equality we obtain
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where c is an arbitrary constant. Then we find the general solution of the equation
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Using the initial condition, we find 
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 Thus, the solution of Cauchy problem is (see Figure 3.10)
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However, this formula has the sense for 
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 only. Note that Picard’s theorem guaranties the solvability of the problem on the small enough interval only that is local solution. (
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Figure 3.10. Cauchy problem has a local solution.
Example 3.4. Consider now the Cauchy problem
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It obviously, that the function
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is the solution of the given problem for all non-negative constant c (see Figure 3.11). Picard’s theorem is not applicable for this case because the function at the right-hand side of the given equation does not satisfy the Lipschitz condition (see Figure 3.12).
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Figure 3.11. Cauchy problem has many solutions.
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Figure 3.12. The function f does not satisfy the Lipschitz condition.
Consider an extension of Theorem 3.2.

3.5. Banach fixed point theorem
Extend the Picard’s method to the general equations. Let A be an operator on a metric space X. Consider the operator equation
                                                                  
[image: image92.wmf].

uAu
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                                                          (3.5)
Its partial case is the integral equation (3.3). The solution of the equation (3.5) is called the fixed point of the operator A. Figure 3.13 explains the geometric sense of this notion.
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Figure 3.13. The fixed point of the operator A is a solution of the equation (3.5).

Suppose the operator А satisfies Lipschitz condition
( (Аu,Аv) ( (( (u,v)  (u,v(Х,

where the positive constant ( is less than 1 (see Figure 3.14). An operator with this property is called the contracting operator.
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Figure 3.14. The operator А is contracting.

Consider the sequence {uk}, determined by the formulas 
                                                           uk+1 = Аuk, k = 0, 1,… .                                               (3.6)

We have the iterative method that is called the method of successive iterations. Its geometric illustration for nonlinear algebraic equation u = f (u)  is given by Figure 3.15.
Using Lipschitz condition, we get

((um+p,um) = ((A um+p-1,A um-1) ( ( ((um+p-1,um-1) ( … ( ( m ((up,u0).

We have the inequality
((up,u0) ( ((up,uр-1) + … + ((u1,u0) ( (( р-1 + … + 1) ((u1,u0).
If ( < 1, we obtain 

( (um+p , um) ( ( m (1–() -1 ( (u1, u0).

The term at the right side of this inequality is small enough for large enough value of the number m. Therefore, our sequence is fundamental.

If the Cauchy principle is applicable, then this sequence converges. Therefore, there exists its limit u. Then after passing to the limit at the equality (3.6) we obtain the equality (3.5). Hence, the equation (3.5) is solvable; its solution is the limit of the sequence {uk}. 
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Figure 3.15. Iterative method for the algebraic equation.

We can determine also the uniqueness of the solution. Indeed, suppose there exist two solutions u1 and u2 of the considered equation that is
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Then we find
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Therefore, our supposition about the existence of the non-unique solution of the given equation is false.
We can estimate also the velocity of the convergence, at last. Suppose u is the solution of the given equation, and the sequence {uk} is determined by the formula (3.6). Then we have 
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Thus, we have the exponential convergence of the algorithm, because ( < 1.

Remark 3.4. We can have the divergence of the algorithm, if ( > 1 (see figure 3.16).
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Figure 3.16. Divergence of the iterative method for ( > 1.

The obtained completely result is the subject of the Banach fixed-point theorem. This is the extension of Picard’s theorem. This is very important application of Cauchy criterion. 
Remark 3.5. The strong definition of this result will be given at the next Chapter. 

Thus, we have the effective enough method for proving of convergence. Hence, we hope to use it for our general problem. However, we do not the information about the applicability of the Cauchy principle for the general metric spaces. This is our next question.
Conclusions
1. The justification of the determination of the mathematical models is based on the passage to the limit. 

2. The passage to the limit is substantiated there if we can guaranty positive properties of the state function.
3. The general definition of the limit is not constructive because it uses a priori knowledge of the limit. 
4. There exists an analogy between the necessity to have a priori information for the determination of mathematical models and the proof of the convergence.
5. We suppose that constructive methods of proving the convergence could help to pass to the limit in the balance relations for the determination of mathematical models.
6. The general proof of the convergence can be based on the Cauchy criterion that does not use the a priori knowledge of the limit.

7. Picard’s Theorem and Banach’s Theorem are the important applications of the Cauchy criterion.

It is necessary to check the applicability of the Cauchy criterion for the arbitrary metric space. 
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